铝合金铸造模具 (根据GB/T 15114-1994)的技术要求: 1)化学成分合金的化学成分应符合GB/T 15114-1994的规定。 2)力学性能 ①当采用铸造模具试样检验时,其力学性能应符合GB/T 15114-1994规定②当采用铸造模具本体检验时,其指定部位切取试样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定。 3)铸造模具尺寸 ①铸造模具的几何形状和尺寸应符合铸件图样的规定。 ②铸造模具的尺寸公差应按GB/T 6414-1999的规定执行。有特殊规定和要求时,须在图样上注明。 ③铸造模具有形位公差要求时,可参照表5;其标注方法按GB/T 15114-1994的规定。 ④铸造模具的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,被包容面以大端为基准;待加工表面:包容面以大端为基准,被包容面以小端为基准,有特殊规定和要求时,须在图样上注明。 4)铸造模具需要机械加工时,其加工余量按GB/T 15114-1994的规定执行。若有特殊规定和要求时,其加工余量须在图样上注明。 5)表面质量 ①铸造模具表面粗糙度应符合GB/T 15114-1994的规定。 ②铸造模具不允许有裂纹、欠铸、疏松、气泡和任何穿透性缺陷。 ③铸造模具允许有擦伤、凹陷、缺肉和网状毛刺等缺陷。但其缺陷的程度和数量应该与供需双方同意的标准相一致。 ④铸造模具的浇口、飞边、溢流口、隔皮、顶杆痕迹等应清理干净。但允许留有痕迹。 ⑤若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置、分型线的位置、浇口和溢流口的位置等由生产厂自行规定,否则图样上应注明或由供需双方商定。 ⑥铸造模具需要特殊加工的表面,如抛光、喷丸、镀铬、涂覆、阳极氧化、化学氧化等须在图样上注明或由供需双方商定。 文章来自国际铸业网
新闻
铸造产品的常见检测类别
铸造产品品质内在质量主要有:化学成分、金相组织、冶金缺陷、物理力学性能、可靠程度、晶粒度(共晶团数)、共晶饱和度、致密度、纯度、连续度等。 这些内在质量会影响使用质量主要有:切削性能、焊接性能、运转性能、耐磨性能、耐蚀性能、耐温性能、工作寿命及其它工作条件要求等,而且其指标也在不断提高。 1、炉前铁液成份检测直读光谱分析仪:分析研究有害微量元素群-特别是气体元素N、0、H 2、铸造原材料质量检测 “X荧光能谱仪”就能在5分钟之内完成作为球化剂、孕育剂的各种铁合金、脱硫剂、炉渣、耐火材料、矿物等原材料的全分析。 便携式的“合金分析仪”即可在料库与车间现场5分种内完成各种黑色、有色合金原材料混料分件的检测难题等等。 3、金相组织与力学性能检测 通过金相分析仪来自动化、智能化的进行金相组织:定量定性分析; 采用“万能材料试验机”和“电子拉力试验机”对力学性能进行智能化分析; 4、铸件无损检测 常用设备有:磁粉探伤、射线探伤、超声探伤或球化率检测、硬度与基体检测、壁厚检测、水(气〕压试验等等,包括“在线自动检测”与“在线自动分选”的成套设备。 由于铸铁毛坯件其表面光洁度较差、材质较疏松、晶粒较粗大以及其内部石墨的存在等因素的影响,因此必须注意探伤方法的选择、仪器的选型、器材的配套、操作的技术与人员的经验等工作。 5、铸件表面质量检查 铸件表面缺陷的检查一般靠目视观察,包括使用小于十倍的放大镜方法、使用现代工业内窥镜方法等。为提高分辨率,还可采用荧光探伤、着色探伤、磁粉探伤等方法来发现表面上或靠近表面的缺陷。 7、炉气分析检测 一般采用:气相色谱仪、红外线气体分析仪等。特别是气相色谱仪,不仅能作炉气分析,还能分析铸铁中的N、O、H含量等。 8、炉前热分析法检测 “热分析法”不仅能快速予报球化率,而且能同时检测C、Si含量及铸铁的孕育效果、基体组织及力学性能等。然而,由于目前国内热电偶材料精度等多因素的影响,热分析法在测试精确度方面还不很令人满意。 铸造产品品质内在质量主要有:化学成分、金相组织、冶金缺陷、物理力学性能、可靠程度、晶粒度(共晶团数)、共晶饱和度、致密度、纯度、连续度等。这些内在质量会影响使用质量主要有:切削性能、焊接性能、运转性能、耐磨性能、耐蚀性能、耐温性能、工作寿命及其它工作条件要求等,而且其指标也在不断提高。 1、炉前铁液成份检测直读光谱分析仪:分析研究有害微量元素群-特别是气体元素N、0、H2、铸造原材料质量检测“X荧光能谱仪”就能在5分钟之内完成作为球化剂、孕育剂的各种铁合金、脱硫剂、炉渣、耐火材料、矿物等原材料的全分析。便携式的“合金分析仪”即可在料库与车间现场5分种内完成各种黑色、有色合金原材料混料分件的检测难题等等。3、金相组织与力学性能检测通过金相分析仪来自动化、智能化的进行金相组织:定量定性分析;采用“万能材料试验机”和“电子拉力试验机”对力学性能进行智能化分析;4、铸件无损检测常用设备有:磁粉探伤、射线探伤、超声探伤或球化率检测、硬度与基体检测、壁厚检测、水(气〕压试验等等,包括“在线自动检测”与“在线自动分选”的成套设备。由于铸铁毛坯件其表面光洁度较差、材质较疏松、晶粒较粗大以及其内部石墨的存在等因素的影响,因此必须注意探伤方法的选择、仪器的选型、器材的配套、操作的技术与人员的经验等工作。5、铸件表面质量检查铸件表面缺陷的检查一般靠目视观察,包括使用小于十倍的放大镜方法、使用现代工业内窥镜方法等。为提高分辨率,还可采用荧光探伤、着色探伤、磁粉探伤等方法来发现表面上或靠近表面的缺陷。7、炉气分析检测一般采用:气相色谱仪、红外线气体分析仪等。特别是气相色谱仪,不仅能作炉气分析,还能分析铸铁中的N、O、H含量等。8、炉前热分析法检测“热分析法”不仅能快速予报球化率,而且能同时检测C、Si含量及铸铁的孕育效果、基体组织及力学性能等。然而,由于目前国内热电偶材料精度等多因素的影响,热分析法在测试精确度方面还不很令人满意。 本文章来自国际铸业网。
不锈钢的热处理技术
铬元素為此类材料具有不銹之因素,以往发现铬含量必须具有12%以上,才能形成密緻之表面氧化膜而达到防蚀保护之作用,故任何不銹钢之热处理必须考虑到对铬之成份有无造成任何变化。 (1) 麻田散铁类不銹钢:此类不銹钢為体心立方之结构(BCC)可為磁铁吸引,其製成為从奥斯田温度急冷而得,此之耐蚀性為最好,但材质硬则脆,接著加以回火可以增加延展性,但耐蚀性会降低,特别是在摄氏450度到650度之间回火,会使在结晶格间隙内之碳原子扩散析出与铬形成网状之碳化铬造成临近区域铬元素之消耗使铬成份降低,无法形成保护膜,而丧失耐蚀性,故需特别注意。以下為各种麻田散铁类不銹钢材之热处理温度。 (a)403, 410, 416se 之温度為650-750℃。 (b)414之温度為650-730℃。 (c)431之温度為6.(d)440-A, 440-B, 440-C, 420之温度為680-750℃。 (2) 肥粒铁类不銹钢:此种不銹钢為体心立方结构(BCC)可為磁铁吸引通常用在汽车工业或化学工业上,强度不会因热处理而改变,但可以冷加工方式增加强度。 (3) 奥斯田铁类不銹钢:此种不銹钢為面心立方结构(FCC)对磁铁不起作用,如前面所论此类材料易加工,故其加工后為消除材料之残餘应力而可施予不同之热处理。 (4) 析出硬化型不銹钢:此种不銹钢由高温淬火后在低温热处理,由於材料中含之铝,或铜元素析出沿著差排之滑面或晶界形成化合物(inter-metallic compounds)而可以提高其强度或硬度。常用之析出硬化型不銹钢為17-4 PH,其他尚有17-7 PH,PH15-7MO,AM-350,AM-355等。 (5) 各类不銹钢焊接后热处理:不銹钢内所含之铬元素,经焊接之后,在高温区域(热影响区)往往会扩散析出与碳结合成碳化铬,而造成局部之铬成份减少,无法形成保护膜,而穿孔等腐蚀情形经常在这些热影响区中发生,為补救这种情形业者经常在焊接完后,将物件以热处理,其作用為使其他区域之铬元素扩散到此铬缺少区域,以达到保护作用。
铸造和锻造如何区别?
铸造和锻造的区别: 1、铸造:就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机、铸铁平板等)较多,且会产生粉尘、有害气体和噪声而污染环境。铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件 ——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 2、锻造:是利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压的两大组成部分之一。通过锻造能消除金属的铸态疏松,焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 锻造按成形方法可分为:①开式锻造(自由锻)。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。②闭模式锻造。金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻、冷镦、旋转锻、挤压等。按变形温度锻造又可分为热锻(加工温度高于坯料金属的再结晶温度)、温锻(低于再结晶温度)和冷锻(常温)。锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、钛、铜等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属等。金属在变形前的横断面积与变形后的模断面积之比称为锻造比。正确地选择锻造比对提高产品质量、降低成本有很大关系。
消失模铸造的界定
最早使用泡沫模型制造金属铸件的方法是美国人H.F斯洛伊(Shroyer)在1958年4月15日获得的美国专利(专利号:2830304)。这一天是铸造史上具有跨时代意义的日子,我们应该把这一天视为消失模铸造纪念日。 在Shroyer的专利中,他描述的是用聚苯乙烯(EPS)泡沫板手工拼接泡沫模型,用粘结砂使之固定进行金属液体浇注的过程。 这种在当时令人耳目一新的铸造方法与传统铸造不同的是:粘结砂中不再是空腔,而是实实在在的泡沫模型,所以,称之为实型铸造,也就是所说的FM或FMCP法。 美国人Shroyer的专利被德国人G.哈特曼(G.Hartmann)买断,在泡沫专家A.维特莫塞(A.Wittmoser)的指导下实现了工业化生产应用,并在1962年首先报导了将泡沫模型埋在干砂中生产铸件的方法。这种方法我们称之为干砂实型铸造。 通常,干砂实型铸造只用于低密度和低熔点的铸铝件,这是因为铸铝件在型腔内金属铝液热辐射和对流导热的系数较小,泡沫型和铝液隙的空隙小,所以,干砂不易溃散。 铸铁,铸钢时由于铸态金属的密度大,温度高,热辐射和对流导热强烈,泡沫气化速度快,发气量大,泡沫型和液态金属间的气隙非常大,所以,干砂显得强度低,定型困难,控制不当,易于溃散塌箱,因此,很少用于铸钢和铸铁件的生产。 几乎与德国G.Harttmann报导干砂实型铸造的同时期,日本长野县工业实验所和秋田株式会社发明了V法铸造(Vacuum)。 V法铸造是英文真空密封法铸造的字头,Vacuum是利用塑料薄膜封闭砂箱,抽真空使干砂定型的造型方法。 1980年Shroyer的专利保护期满后,使用泡沫模型做铸造的方法才从垄断中解放出来,得到了迅速发展。聪明的日本人将抽真空使干砂定型的方法应用到泡沫型铸造上,使消失模铸造和真空铸造得以同时发展,而产生了我们今天共同研讨的,具备泡沫模型,干砂,真空三个工艺条件的铸造方法。 这种铸造方法初始名字很多,如:气化模铸造,负压实型铸造,泡沫模型干砂负压法铸造等等,为了避免多种称谓给描述造成的混淆和误解,1990年夏季,美国铸造协会通过一项协议,将使用泡沫做模型,干砂埋型,抽真空定型的这种铸造方法称为:消失模铸造,简称(EPC)。 通过对消失模铸造发展简史的回顾,我们可以勾勒出这样的一个过程:消失模铸造方法的发展和不断完善,是由泡沫模型湿砂法(FM法)向泡沫模型干砂负压法(FV法)的衍变过程。这种衍变不仅仅是造型方法的衍变,而是工艺原理发生了根本的变化。泡沫模型的消失方式发生了根本的转变。 实型铸造的泡沫模型是在开放条件下,猛烈燃烧消失。 干砂实型铸造多用于铸铝体,泡沫模型以液化方式消失为主。 负压实型干砂(消失模)铸造方法,泡沫模型则是以气化为主的方式消失。 以上所述的三种方法,不仅泡沫的消失方式不同,定型原理也根本不相同,所以,各自对涂料性能的要求也不尽相同。 实型铸造依靠粉结剂使型砂定型,又是开放式浇注,涂料在型砂和液态金属之间主要起隔断作用,防止发生难以清除的粘砂。 不抽真空的干砂实型铸造型砂定型机理相对复杂,这种方法必须由模型底部注入金属液,液态金属依靠其静压力充型,在液面不断上升的过程中通过辐射的导热方式,把携带的热量传递给泡沫模型,泡沫受热后迅速收缩,液化并滴落在液态金属层表面。滴落在液态金属表面的液态泡沫材料受到更高温度的作用,迅速气化产生高压气体。气隙间隙的型砂就是依靠气体的高压维持模型腔的形态。 金属液面不断的以上凸的形态上升,液态的泡沫物瞬间就会被挤压在液态金属和涂层之间。为避免铸造缺陷的发生,这种方法要求涂层有良好的润湿性能,吸收泡沫模型的液化物,并在液态金属压力的作用下使泡沫模型的液化物排除型腔,进入砂型间隙。 在液态金属高温的作用下,液态泡沫在排出的过程中不断地气化进入外围的砂子间隙,此时,气化泡沫物的遇冷又凝结成液态物质,使型砂粘结定型。 在抽真空的状态下,大气产生的压力差使型砂紧实的如同石块一样坚硬,本文讨论的是具有泡沫模型,干砂,抽真空三个工艺条件的消失模铸造方法所使用涂料的相关问题。 笔者认为,使用泡沫型铸造的方法有三种,虽然泡沫模都消失,但在我国的氛围,只有具备泡沫型,干砂,真空三种工艺条件的铸造方法才应该称之为消失模铸造。