锻造 锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能,一定形状和尺寸锻件的加工方法。 铸造 铸造就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固,清整处理后得到有预定形状,尺寸和性能的铸件的工艺过程。 保定国坤机械生产的锻件,铸件产品适用于多个行业领域深受广大客户满意,我司能够根据不同材料的不同性能合理安排锻造或铸造工艺,使客户的产品性能及品质得到保证。 保定精密铸造厂家 保定精密机加工厂家 保定锻造厂家 保定铸铁厂家 保定铸铝厂家 保定铸钢厂家 覆膜砂铸铁件 覆膜砂铸钢件 铝合金压铸件厂家 水玻璃精密铸造 硅溶胶精密铸造 水玻璃精密铸造厂家 硅溶胶精密铸造 工程机械配件 电梯配件 农机配件 五金配件
新闻
热处理作用及加热变形怎么处理
保定国坤机械热处理 正确安排零件热处理工序在机械加工中的位置主要由零件的材料及热处理的目的来决定的,一般热处理的处理方法有: 退火,正火,淬火,回火,调制,时效,化学处理。 1.热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。 2.加热预防变形的发生最好是缓慢加热,并实施预热处理。一般钢材在选择预热温度时,可以下作准则来选定预热温度: (1)以变态点以下作为预热认读,例如普通钢约在650℃—700℃,高速钢则在800℃—850℃左右。 (2)以500℃左右作为预热温度。 (3)二段式预热,先在500℃左右作第一段预热,保持一段时间充分预热后,再将预热温度调高至A1变态点以下。 (4)三段式预热,针对含有高含量合金之大型钢材,例如高速钢,有时需要在1000℃—1050℃作第三段预热。 精密熔模铸造 精密加加工 覆膜砂铸铁件 覆膜砂铸钢件 覆膜砂铸铝件 树脂砂铸铁件 黏土湿砂型铸造 不锈钢阀体 碳钢配件 合金钢铸造 球铁泵体 球铁阀体 球铁沟槽管卡 球铁沟槽管件 铝合金各类铸造产品 铝合金压铸 铝合金砂铸 重力浇注铝合金
压力铸造、挤压铸造及气压铸造成形技术
这三种铸造技术适用于颗粒、短纤维及晶须增强复合材料、长纤维复合材料的制作。使用这类方法时一般要按零件的形状预先制得增强物预制块。预制块可以通过非有机粘结剂粘结后预压成块,也可烧结而成。 1、压力铸造成形技术使用压力铸造时,将预制块放入带有分型机构的半型中,合型后在200MPa压力作用下使液体迅速充型。这种方法操作简单,但由于充型速度高、凝固速度快,极易使铸件形成内部气孔缺陷。 2、挤压铸造成形技术挤压铸造和压力铸造的不同点是:将预热后的预制块放入预热的铸型中,在重力下浇入液态金属或合金,然后在压头作用下使液体渗入预制块,液态金属在压力下凝固。有人用这种方法制取Al2O3短纤维锌基复合材料。日本有人直接将碳及玻璃颗粒放入铸型,然后压头作用在锡液上使金属体挤入铸型。 不采用预制块的另一种做法是将机械搅拌和挤压结合起来。我国有人用这种方法制取了高质量的铝/石墨复合材料及铸件。在搅拌阶段,以400~1000r/min转速搅拌金属液体,然后以10~90g/min的速度将石墨粉加入含有镁0.25~0.50wt%的铝液中。 在挤压阶段,采用10t油压机,压力为91MPa左右。田中荣一也用此法生产Al2O3颗粒增强锡基复合材料。李爱华将撑融铸造与挤压铸造结合起来,将重量比为铝合金的3%~6%的包镍铜石墨粉加入到液固合金浆液中,然后将其迅速挤压成轴承毛坯。搅拌器表面涂有耐热矾土水泥,转速为400~1500r/min.挤压设备为YA32-100型挤压机,加压速度为7mm/s.不少人对复合材料的挤压铸造在理论上做了深入探讨。储双杰等在利用挤压铸造制造碳纤维增强A356复合材料时特别研究了合金的凝固过程。发现在浇注温度高时其凝固发生在整个浸渗过程之后。由于模具和纤维的激冷作用,初生铝固溶体相在纤维间隙开始形核并逐渐向纤维表面长大;而共晶硅相则是依附在碳纤维表面形核及长大。并发现,随凝固冷却速度的降低,共晶硅相的形态由蠕虫状向针状、块状转变。 同样有人在研究CF/Al-4.5Cu复合材料的挤压铸造时,发现初生铝固溶体也是在纤维间隙形核并向纤维表面长大;而共晶θ相则依附于碳纤维表面形核长大。由于这种材料的界面结合很强,其断裂特征为脆性断裂。LabibA还研究了冷却速度(0.1~100℃s-1)对挤压铸造G-SiC增强铝基复合材料凝固组织的影响,发现冷却速度越大,SiC颗粒的分布越均匀。 3、气压铸造及真空压渗铸造成形技术这种方法是在气体压力作用下将金属液体压入增强材料制成的预制型间隙中。RohatgiPK用此法生产铝基SiC及Al2O3纤维增强复合材料。用长纤维绕制成预制型。液体温度在700~800℃范围,铸型预热温度为450~500℃,气体压力为1MPa左右,比挤压所用压力低得多。所制产品中纤维体积量达40%~60%。事先采用化学镀方法通过CuSO4和HCHO反应在碳纤维表层镀一层铜,然后将镀铜纤维放入石英管中,再将石英管浸入铝液中保温2min,然后通过0.49MPa的氮气作用于液态金属表面使液体充入石英管中。 我国有人采用真空压渗技术生产铝基电子封装复合材料。在真空状态下熔化金属,浇注时撤去真空,通入气体使液体受压,将液体通过升液管压入上部铸型中的预制型内。80年代中期Dural-Al基复合材料公司提出了搅拌加气压铸造的新工艺。 其工艺要点是:整个制造过程包括合金熔化、增强剂的加入、搅拌及浇注均处于真空状态;搅拌器采用多级倾斜叶片,转速提高到2500r/min;保证足够的保压时间,以解决液体与增强物的结合问题;采用水冷工艺,使合金中的溶质偏析程度减小,这种方法适合于颗粒增强复合材料的制造。 本文章来自国际铸业网
铸件内部缺陷的检测
对于内部缺陷,常用的无损检测方法是射线检测和超声检测。其中射线检测效果最好,它能够得到反映内部缺陷种类、形状、大小和分布情况的直观图像,但对于大厚度的大型铸件,超声检测是很有效的,可以比较精确地测出内部缺陷的位置、当量大小和分布情况。 1.射线检测(微焦点XRAY) 射线检测,一般用X射线或γ射线作为射线源,因此需要产生射线的设备和其他附属设施,当工件置于射线场照射时,射线的辐射强度就会受到铸件内部缺陷的影响。穿过铸件射出的辐射强度随着缺陷大小、性质的不同而有局部的变化,形成缺陷的射线图像,通过射线胶片予以显像记录,或者通过荧光屏予以实时检测观察,或者通过辐射计数仪检测。其中通过射线胶片显像记录的方法是最常用的方法,也就是通常所说的射线照相检测,射线照相所反映出来的缺陷图像是直观的,缺陷形状、大小、数量、平面位置和分布范围都能呈现出来,只是缺陷深度一般不能反映出来,需要采取特殊措施和计算才能确定。现在出现应用射线计算机层析照相方法,由于设备比较昂贵,使用成本高,目前还无法普及,但这种新技术代表了高清晰度射线检测技术未来发展的方向。此外,使用近似点源的微焦点X射线系统实际上也可消除较大焦点设备产生的模糊边缘,使图像轮廓清晰。使用数字图像系统可提高图像的信噪比,进一步提高图像清晰度。 2.超声检测 超声检测也可用于检查内部缺陷,它是利用具有高频声能的声束在铸件内部的传播中,碰到内部表面或缺陷时产生反射而发现缺陷。反射声能的大小是内表面或缺陷的指向性和性质以及这种反射体的声阻抗的函数,因此可以应用各种缺陷或内表面反射的声能来检测缺陷的存在位置、壁厚或者表面下缺陷的深度。超声检测作为一种应用比较广泛的无损检测手段,其主要优势表现在:检测灵敏度高,可以探测细小的裂纹;具有大的穿透能力,可以探测厚截面铸件。其主要局限性在于:对于轮廓尺寸复杂和指向性不好的断开性缺陷的反射波形解释困难;对于不合意的内部结构,例如晶粒大小、组织结构、多孔性、夹杂含量或细小的分散析出物等,同样妨碍波形解释;另外,检测时需要参考标准试块。 本文章来自国际铸业网。
铝合金压铸件四种表面处理方法
1、铝材磷化 通过采用SEM,XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、氟化物、Mn2+,Ni2+,Zn2+,PO4;和Fe2+等对铝材磷化过程的影响。研究表明:硝酸胍具有水溶性好,用量低,快速成膜的特点,是铝材磷化的有效促进剂:氟化物可促进成膜,增加膜重,细化晶粒;Mn2+,Ni2+能明显细化晶粒,使磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着Zn2+浓度增加,膜重增加;PO4含量对磷化膜重影响较大,提高PO4。含量使磷化膜重增加。 2、铝的碱性电解抛光工艺 进行了碱性抛光溶液体系的研究,比较了缓蚀剂、粘度剂等对抛光效果的影响,成功获得了抛光效果很好的碱性溶液体系,并首次得到了能降低操作温度、延长溶液使用寿命、同时还能改善抛光效果的添加剂。实验结果表明:在NaOH溶液中加入适当添加剂能产生好的抛光效果。探索性实验还发现:用葡萄糖的NaOH溶液在某些条件下进行直流恒压电解抛光后,铝材表面反射率可以达到90%,但由于实验还存在不稳定因素,有待进一步研究。探索了采用直流脉冲电解抛光法在碱性条件下抛光铝材的可行性,结果表明:采用脉冲电解抛光法可以达到直流恒压电解抛光的整平效果,但其整平速度较慢。 3、铝及铝合金环保型化学抛光 确定开发以磷酸一硫酸为基液的环保型化学抛光新技术,该技术要实现NOx的零排放且克服以往类似技术存在的质量缺陷。新技术的关键是在基液中添加一些具有特殊作用的化合物来替代硝酸。为此首先需要对铝的三酸化学抛光过程进行分析,尤其要重点研究硝酸的作用。硝酸在铝化学抛光中的主要作用是抑制点腐蚀,提高抛光亮度。结合在单纯磷酸一硫酸中的化学抛光试验,认为在磷酸一硫酸中添加的特殊物质应能够抑制点腐蚀、减缓全面腐蚀,同时必须具有较好的整平和光亮效果 4、铝及其合金的电化学表面强化处理 铝及其合金在中性体系中阳极氧化沉积形成类陶瓷非晶态复合转化膜的工艺、性能、形貌、成分和结构,初步探讨了膜层的成膜过程和机理。工艺研究结果表明,在Na_2WO_4中性混合体系中,控制成膜促进剂浓度为2.5~3.0g/l,络合成膜剂浓度为1.5~3.0g/l,Na_2WO_4浓度为0.5~0.8g/l,峰值电流密度为6~12A/dm~2,弱搅拌,可以获得完整均匀、光泽性好的灰色系列无机非金属膜层。该膜层厚度为5~10μm,显微硬度为300~540HV,耐蚀性优异。该中性体系对铝合金有较好的适应性,防锈铝、锻铝等多种系列铝合金上都能较好地成膜。 5、YL112铝合金表面处理工艺技术 YL112铝合金广泛应用于汽车、摩托车的结构件。该材料在应用前需要进行表面处理,以提高其抗腐蚀性能,并形成一层容易与有机涂层结合的表面层,以利于随后的表面。 本文章来自国际铸业网